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The interrelation between data channels of multivariate data sets may lead to cluster formation. Revealing
the cluster structure can give important information about the underlying systems’ properties. Here we inves-
tigate the features of a recent genuinely multivariate cluster detection algorithm that is suitable for time-
resolved and unsupervised application to nonstationary and noisy time series. Using numerical test systems it
is discussed under which conditions intra- and inter-cluster relations can be disentangled and quantified. In
addition different types of errors occurring when channels are automatically attributed to clusters are investi-
gated quantitatively. Finally, the algorithm is applied to nonstationary model time series and its time-dependent
performance is compared to other cluster detection algorithms.
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I. INTRODUCTION

Many complex systems stemming from different fields of
science like physics, engineering, geology, meteorology, so-
ciology, and medicine are assessed by measuring multichan-
nel data. Another prominent example is the dynamics of fi-
nancial data of stock markets. In all these fields important
problems are the revealing of structures in the data, informa-
tion reduction or the characterization of collective dynamics
in complex systems whose interactions are not always
known. To this end identification and classification of clus-
ters �groups� within the M�1 data channels that are related
to each other in terms of any kind of interrelation measure is
desired. A reliable, computationally simple and parameter
free approach would find a wide range of applications in all
the fields mentioned.

An overview over classic clustering algorithms is given in
�1,2�. In general they can be divided into partitional and
hierarchical methods. Another important division can be
made between hard and fuzzy algorithms. In addition to the
classic approaches in the past two decades methods of statis-
tical physics have increasingly been used for cluster detec-
tion. Most of them postulate or derive a cost function, which
is minimized in high-dimensional spaces by different tech-
niques �3–9�. An alternative method bases on the size of the
components of the largest eigenvectors of the equal-time
cross-correlation matrix �10–12� or synchronization matrix
�13,14�. As the algorithm proposed in the present paper uses
eigenvectors as a basic ingredient, too, the foundations, suc-
cess, and problems of this approach will be discussed in
more detail in the subsequent section. An important problem
of most of the methods mentioned so far is that they either
suffer from an elevated computational effort or require the
definition of some kind of threshold parameter �occasionally
fixed by the visual inspection of some statistics�. In addition
for application to nonstationary data a continuous adjustment
of the parameters may become necessary.

Very recently, an approach to detection of synchronization
clusters in multivariate time series was developed that is

based on coarse graining of Markov chains �15� and seems to
be suitable for unsupervised application. In the present paper,
we investigate the properties of another recently introduced
method for automated partitional clustering of nonstationary
time series that does not suffer from the aforementioned de-
ficiencies �16�. Both number and size of the clusters are de-
termined in a self-contained manner, i.e., without setting any
artificial parameters. The algorithm requires an optimization
procedure in a relatively low dimensional space only which
makes it computationally fast. Consequently, it is a good
candidate for future unsupervised application to long-term
recordings of possibly nonstationary data, such as, e.g., hu-
man electroencephalograms �EEG�.

The paper is organized as follows. In the subsequent sec-
tion we discuss cluster algorithms based on the largest eigen-
vectors of interrelation matrices. Thereafter, we present in
Sec. III an algorithm that still uses eigenvalues and eigen-
vectors but does not suffer from their typical deficiencies. In
Sec. IV it is discussed how the intra- and inter-cluster rela-
tions in the analyzed data can be quantified. The performance
of the algorithm is explored in Sec. V. Finally, application is
made to model data with time-dependent interrelation struc-
ture in Sec. VI before discussing our results in Sec. VII.

II. CLUSTERS AND EIGENVECTORS

A central quantity used for cluster detection in �6–16� are
normalized M �M interrelation or similarity matrices C
whose elements satisfy the properties

− 1 � Cij � 1, �1�

Cii � 1, �2�

Cij = Cji. �3�

Here Cij =0 describes absent and �Cij � =1 maximal mutual
interrelation of data channels “i” and “j” with respect to an
interrelation measure which we do not specify further at
present. The property �2� of the diagonal elements reflects
that each channel is perfectly related to itself and the sym-
metry property �3� implies real eigenvalues that will be or-*crummel@web.de
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dered according to �l��l−1 in the sequel. Examples for in-
terrelation measures that satisfy these demands are the linear
equal-time cross-correlation or Pearson’s coefficient �17,18�
or nonlinear measures like mean phase coherence �19,20�,
partial phase synchronization �28� and �normalized� mutual
information �21,22�. For the latter recently an algorithm for
hierarchical clustering has been proposed that makes use of
the grouping property of that measure �23�. Note that many
other valuable measures for the interrelation of two time se-
ries like Granger causality �24,25�, directed transfer function
�26�, and the very similar partial directed coherence �27�,
which can be used to identify a directedness of the mutual
influence, do not satisfy Eq. �3�. We do not consider such
measures in the present publication. As the clustering algo-
rithm to be investigated does not depend on the details of the
used interrelation measure the discussion will be kept gen-
eral, specifying to linear cross-correlation first in Sec. V.

In the sequel we define clusters on the basis of interrela-
tion matrices C as closed groups of channels that are mutu-
ally interrelated by matrix elements Cij whose absolute value
is on average significantly larger than the average connection
from this group to the remaining channels. In the idealized
situation of total absence of connections from K clusters to
the rest such matrices can in principle be written in block
diagonal form by introducing a useful labeling of the chan-
nels. Then the cluster structure becomes immediately visible:
C=diag�C11. . .CKK�. As relabeling of channels does not af-
fect the structure of the network we start our discussion from
the following block model without loss of generality:

C =�
C11 d12 ¯ d1K 0

d12 C22 ¯ d2K 0

] ] � ] ]

d1K d2K ¯ CKK 0

0 0 ¯ 0 1
� . �4�

Here the quadratic matrices Ckk �k=1, . . . ,K� have dimen-
sion mk�2 which fulfill 	kmk�M. All diagonal elements
fulfill Eq. �2� and its off-diagonal elements have identical
values 0�ck�1. The K�K−1� /2 matrices dkl have identical
elements dkl. In the Appendix some properties of this simpli-
fied but generic model are discussed in detail.

Let us mention that different points of view are possible
here. One possibility is to interpret the matrices Ckk as the
clusters with intra-cluster relations modeled by the ck. The
matrices dkl model possible inter-cluster relations. In the
limit ck� �dkl� this interpretation in terms of distinct but
weakly connected clusters is surely a natural one. We will
stick to this point of view throughout the paper. However, in
the opposite limit ck� �dkl� it might be more appropriate to
have in mind a single cluster with substructure.

Using model �4� cluster detection algorithms can try to
find block patterns in interrelation matrices that are con-
structed from the data under investigation. Indeed, in �8� an
�appropriately filtered� correlation matrix constructed from
stock return time series is brought into an approximately
block diagonal form with �ck � � �dkl�. To this end the channel
labels “i” are relabeled in such a way that a cost function is

minimized using a computationally expensive “traveling
salesman” algorithm. However, there is the deficiency that
for any time series of finite length T the genuine system-
specific correlations described by the elements Cij of corre-
lation matrices are contaminated by noise and random corre-
lations of the order 
1 /�T. A step toward the solution of this
problem consists in matrix diagonalization; see e.g.
�11,29,30�. It has been found that the genuine system-specific
correlations one is interested in manifest themselves via non-
random level repulsion �12,31� and an increased rigidity of
the spacing distributions �32� between subgroups of eigen-
values of the correlation matrix.

In the present paper we exploit properties of the eigenval-
ues �l and eigenvectors vl of interrelation matrices C in order
to gain information about the cluster structure of the data. It
can easily be shown for the model �4� with dkl=0 that for
systems containing K clusters with mk contributing channels
each, the rule is that for every cluster one eigenvalue is in-
creased with respect to the uncorrelated situation and mk−1
eigenvalues are decreased; see the Appendix. The unchanged
eigenvalues �l�1 will be addressed as the “bulk” in the
sequel. In addition in this simplified situation the cluster
structure can directly be deduced from the eigenvectors of
the K largest eigenvalues �henceforth abbreviated as “largest
EV”�. In general, in the sense of principal component analy-
sis �PCA� these eigenvectors point to the directions of maxi-
mal variance; see e.g. �33�.

Already in one of the first applications of methods taken
from random matrix theory to analysis of financial time se-
ries it was suggested to investigate the components of eigen-
vectors having large inverse participation ratios in order to
identify industry sectors �30�. Indeed, using correlation ma-
trices constructed from stock returns, in �10,11� financial
market sectors could be identified by looking for large com-
ponents ail

2 of the K� largest EV �vl. In �12� this approach
was refined by introducing an additional criterion that is
meant to suppress wrong attributions due to incidentally
large ail

2. However, in many practical situations a clear sepa-
ration of the clusters is difficult to obtain due to the presence
of random and inter-cluster relations, which provoke a mix-
ing of the eigenvector components. For example, in Fig. 1 of
�10� some industry sectors are represented by symmetric and
antisymmetric linear combinations of eigenvectors corre-
sponding to large eigenvalues of a correlation matrix con-
structed from stock return time series. Similarly in Fig. 1 of
�8� the mixed structure of the second to fifth largest EV is
shown.

For illustration, we give in Fig. 1�a� the example of Nens
=100 numerical realizations of a variant of the block model
�4� where K=3 groups of size m1=7, m2=5, and m3=3 are
correlated within a total of M =20 channels. Clusters “1” and
“2” have positive inter-cluster relation, whereas clusters “2”
and “3” are antirelated. Different to the restriction to identi-
cal matrix elements ck and dkl made below Eq. �4� the off
diagonal matrix elements of the blocks Ckk and dkl are drawn
independently from Gaussian distributions with center ck

�0�

=c�0�=0.6, d12
�0�=−d13

�0�=−d23
�0�=d�0�=0.3 and �relatively large�

widths �c=�d=0.15. In addition the matrices 0 of Eq. �4� are
replaced by random numbers that are drawn from a Gaussian
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distribution with zero mean and width �=0.15. Whenever a
matrix element left the range �−1,1� it was set to the maxi-
mal or minimal value. In Fig. 1�a� almost all channels that
correspond to one of the clusters contribute to the largest two
eigenvectors v20 and v19 with a comparable strength aik

2 . In
the context of M financial time series the contribution to vM
has been called the “market wide effect.” Contributions to
the lower eigenvectors v18 and v17 average out entirely. As
one can see, in the presence of random and inter-cluster re-
lations using the largest few eigenvectors a clear distinction
is only possible between the total set of clustered �full sym-
bols� and the unclustered channels �open circles� whose
squared components are often orders of magnitude smaller.

In �13,14� participation indices �PI� pil=�lail
2 were intro-

duced as a step towards the solution of the problems that
arise when channels are attributed automatically to clusters
on the basis of the largest EV. The PI quantify the “absolute
involvement” of channel “i” in cluster “l.” Its “strength” is
given by the eigenvalue �l and the “relative involvement” of
the channels by the squared components ail

2 of the corre-
sponding eigenvector. Every channel “i” is attributed to the
cluster “k” with the maximal PI: pik=maxl pil. Finally only
clusters corresponding to an �often small� number K� of larg-
est eigenvalues �k�1 are accepted. The concept of PI works

well in situations with a pronounced cluster structure and a
strong repulsion of the largest eigenvalues from the “bulk”
that is affected by random correlations only. Furthermore, it
provides a conceptionally simple algorithm which is appli-
cable in automated manner and real time. However, it tends
to find “pseudoclusters” �14� from channels having inciden-
tally large components in eigenvectors that correspond to
smaller eigenvalues. In addition it was found in �14� that the
PI are easily misled in situations of equal cluster size and
large inter-cluster relations.

III. CPV ALGORITHM

A. Cluster participation vectors

The basic idea of our approach �16� is to find a set of
orthonormal linear combinations �wl—called cluster par-
ticipation vectors �CPV� in the sequel—of the K�	M largest
EV �vl that have dominant entries exclusively for those
components which correspond to the cluster “l.” For matrices
of the form �4� with dkl=0 the CPV are identical to the
largest EV: wM+1−k�vM+1−k

�0� �k=1, . . . ,K��; see the Appen-
dix. If this condition is violated the �wl are of course not
eigenvectors of the interrelation matrix C anymore. Rather
suitable vectors can be found by maximizing the distance
measure

Dln = D�wl,wn� = 	
i=1

M

�bil
2 − bin

2 � , �5�

where the bil are the components of vector wl. Note, that Dln
satisfies all requirements of a metric �symmetry, positive
semidefiniteness, triangle inequality�. Dln is equal to zero for
vectors where all components are identical to each other up
to a sign and assumes its maximum value Dln=2 for normal-
ized vectors wl and wn without common components.

It is important to note that we do not use Eq. �5� for
distance clustering �1,2� in the sequel, but to minimize com-
mon components between linear combinations of the largest
EV. In general the CPV can be obtained by a rotation of the
K� largest EV �vl about the generalized Euler angles �GEA�

�, �=1. . .K��K�−1� /2 such that the sum

� = 	
l=M−K�+1

M

	
n�l

D�wl,wn� �6�

is maximized. An explicit recipe for the construction of the
rotation matrix needed in K� dimensions �in Sec. III C it is
discussed how one can fix this dimension� is given in �34�.
Due to the symmetry of the problem under reflection of the
axes it suffices to use angles in the interval 0�
�� /2 in
our case. In order to obtain the global maximum of ��
�� in
the K��K�−1� /2-dimensional space of the 
� we apply the
great deluge algorithm �GDA� of �35� which works as fol-
lows: Arbitrary points in the K��K�−1� /2-dimensional land-
scape are tested for their value of Eq. �6�. All points are
accepted that satisfy the only restriction that � is larger than
a “water level” W�Wmin=min���=0. If the point is in the
allowed region W is increased by the “rainfall” rate �W and
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FIG. 1. Comparison of the squared average components of the
K�=4 largest EV vM+1−k of the interrelation matrix with those of
their linear combinations wM+1−k, k=1, . . . ,K� for Nens=100 inde-
pendent realizations. The error bars are often of the size of the
symbols. The channels that contribute to the K=3 clusters are
marked with full symbols �� , � , � � and the uncorrelated ones
with open circles ���.
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the procedure is repeated. Otherwise, in total N trials are
tested independently, leading to a break of the process if no
points ��W are found anymore. This procedure is compu-
tationally fast and known to get stuck in local maxima of
multidimensional landscapes only rarely due to the fact that
random moves into “wrong” �downward� directions are al-
lowed. In our implementation, we use �W=0.001 and N
=1000.

An example for the usefulness of the construction of the
CPV �wl is illustrated in Fig. 1�b� for the same situation as
in �a�: K�=4 eigenvectors were taken into account. Each of
the CPV w20. . .w18 corresponds to exactly one of the K=3
clusters and different to the eigenvectors themselves a clear
distinction between clusters and uninvolved channels is pos-
sible. As opposed to that the structure of w17 cannot be dis-
tinguished from v17. This fact can be used to deduce the
number K of clusters that are actually formed in the data.
Table I shows that the distance �6� has increased on average
about 39% by the rotation �from 7.26 for the �vl to 10.06 for
the �wl�. Note that for Nens=100 calculations of the mutual
distance �5� between two independently sampled normalized
random vectors in M =20 dimensions with Gaussian distrib-
uted components we obtain Dln=1.11�0.08. Consequently,
the distance D�v20,v19� between the two largest EV lies sig-
nificantly below and all distances D�wl ,wn� between the
CPV significantly above this value, see entries below the
diagonal in Table I. In contrast most of the remaining dis-
tances D�vl	20,vn	19� have a considerable overlap with the
result Dln for random vectors, see entries above the diagonal
in Table I.

The squared components bil
2 of the CPV give information

about the involvement of the channels “i” in the cluster “l.”
In order to demonstrate this we show in Fig. 2 the largest EV
and CPV of a single equal-time correlation matrix that was
constructed from M =32 time series which were sampled
from Gaussian noise. In order to have a well defined cluster
structure the first m1=13 and the next m2=9 time series were
coupled via an admixture of a common noise component; see
Sec. V A for details of the test system. Thereby the last 7 and
5 channels are coupled to the cluster with only 40 and 60%
of the common noise component, respectively. Two observa-
tions can be made: First, an interpretation that bases on the
size of the squared eigenvector components ail

2 could easily
be lead to the wrong conclusion that four clusters were
present. This is not the case for the squared components bil

2

of the CPV. Here the channels that contribute to the two
clusters are separated from the non-contributing ones by or-
ders of magnitude and can be distinguished clearly. Second,

the relative involvement of the channels in the clusters as
given by the size of the common noise component �see Sec.
V A� is reflected correctly by the bil

2.

B. Cluster participation coefficients

Using the notation �·� · � for the scalar product the relation

	
k=M−K�+1

M

��vk�wl��2 = 	
l=M−K�+1

M

��vk�wl��2 = 1 �7�

is satisfied by construction for the K� largest EV and the
corresponding CPV. In addition to the CPV we introduce
cluster participation coefficients �CPC� as defined by

�l = 	
k

��vk�wl��2�k. �8�

The CPC �l reduce to the eigenvalues �l in the limit of
vanishing inter-cluster relations �where wl�vl� and share the
following properties: �M+1−K���l��M and 	l�l=	l�l=M.
In the following the CPC will be used to assign an ascending
order to the CPV.

Figure 3 illustrates the dependence of the eigenvalues �k
and CPC �k on the relative strength d�0� /c�0� of the inter-
cluster relations for the same model as in Fig. 1. Shown is a
band of one standard error deviation from the average. The
most important observation is that the CPC stay almost con-
stant with weakly increasing fluctuations up to d�0� /c�0�

�0.7 and can be nicely described by zero order perturbation
theory �A1� to Eq. �4�: �k��k

�0�. In contrast the repulsion of
the two largest eigenvalues �the three clusters merge into a
common one� for increasing intercluster relation d�0� can be
described well by second order perturbation theory �A5� for
d�0� /c�0��0.3.

Figures 1 and 3 together make it possible to understand,
why the PI algorithm of �13,14� fails in situations with strong
inter-cluster relations: If the largest eigenvalue �M is in-
creased strongly as shown in Fig. 3 an estimate of the cluster

TABLE I. Mutual distances D�vl ,vn� �above diagonal� and
D�wl ,wn� �below diagonal� between the largest EV and the CPV for
the situation shown in Fig. 1.

l=20 l=19 l=18 l=17

n=20 0 0.69�0.18 1.25�0.18 1.30�0.16

n=19 1.65�0.14 0 1.38�0.17 1.38�0.16

n=18 1.68�0.13 1.61�0.13 0 1.26�0.22

n=17 1.78�0.12 1.68�0.15 1.66�0.15 0
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FIG. 2. Comparison of the squared components of the K�=2
largest EV vM+1−k of the C matrix with those of their linear combi-
nations wM+1−k, k=1,2. The channels that contribute to the K=2
clusters are marked with full symbols �� , � , � � and the uncorre-
lated ones with open circles ���.
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“M” ’s “strength” by �M leads to an overestimation whereas
at the same time the “strength” of the clusters “M −1” to
“M −K+1” is underestimated. In addition the distribution of
the components aiM

2 becomes flat and consequently many
channels “i” are erroneously attributed to the cluster “M”;
see Fig. 1�a�.

C. Definition of K�

Still it has not been clarified how the number K� of largest
EV used for the maximization described in Sec. III A has to
be chosen in situations where the number K of clusters is
unknown beforehand. In the optimal situation K� can be de-
duced from the number of “large” eigenvalues that are
clearly separated from the “bulk” via a gap in the eigenvalue
spectrum. In the presence of purely random correlations of
size � the “bulk” is centered at ��0�=1 and has a width 
�.
From Eq. �A1� it becomes obvious that the condition for a
clear separation between “large” eigenvalues and “bulk” ei-
genvalues is mink�mk−1�ck�� if inter-cluster relations can
be neglected.

In Fig. 3 this condition is not fulfilled, mainly due to the
large width of random fluctuations and the small number of
m3=3 participants in cluster “3.” In such situations compari-
son with the spectrum of reference data without strong inter-
relations can be made use of. For time series that can be
decomposed into �approximately� stationary segments it is
conceivable to use univariate surrogate time series; see e.g.
�36�, that are independently produced for all M data chan-
nels. Such a procedure by definition destroys all linear and
nonlinear relations between the channels and K� can be fixed
by the number of eigenvalues that are larger than the largest
eigenvalue of the interrelation matrix of the surrogates: �l
��M

surr. For noisy time series this is very similar to using the
upper boundary �+ of the level density of Wishart ensembles
�17,37� for the same purpose. Under the condition T ,M�1

but T /M =const�1 the eigenvalue density of the correlation
matrix of time series that are sampled independently from
Gaussian white noise is nonzero only in the range �−��
��+ with ��= �1��M /T�2 �38�. In �10� the condition �l

��+ is used for selection of the largest EV for direct cluster
identification.

For time-dependent applications of the algorithm to non-
stationary data also an appropriately chosen reference inter-
val where only weak interrelations are suspected can be used
to define the number K� of “large” eigenvalues dynamically.
As an example it can be defined as the number of eigenval-
ues that climb over a threshold which is not trespassed in,
say, 90 or 95% of the reference interval.

For the correlation matrix it has been found recently that
spectral fluctuations as displayed by the distribution P�sl� of
individually unfolded nearest neighbor spacings sl=�l+1−�l
indicate even more sensitively in which part of the eigen-
value spectrum genuine correlations are induced via nonran-
dom level repulsions than the level density itself �32�. Inves-
tigation of possible exploitation of these effects for our
purposes is underway.

Independently of how K� is fixed, a nonoptimal choice of
K��K does not affect the results dramatically �however in-
creases the computational effort as the dimension of the
space of the GEA 
� increases�. Rather the algorithm focuses
automatically on the K largest EV that correspond to the K
clusters as illustrated in Fig. 3: Different to �20. . .�18 and
within their respective error bars �17 and �17 behave very
much alike. Similarly in Fig. 1 the structure of the CPV w17
and the corresponding eigenvector v17 cannot be distin-
guished whereas w20. . .w18 nicely indicate the channels that
contribute to the clusters.

D. Automatic attribution of channels to clusters

As we are aiming at a time resolved and unsupervised
application of the algorithm to interrelation matrices con-
structed from possibly non-stationary time series the chan-
nels have to be attributed to clusters automatically, once the
CPV are found. For separation of large from small compo-
nents of wl it is suitable to first arrange the bil

2 in increasing
order by rank ordering. For the components of the CPV w32
of Fig. 2 this is shown in Fig. 4�a�. Two measures are can-
didates for a good separation algorithm: The largest ratio y
and the largest difference x between neighboring rank or-
dered bil

2. Either option alone fails in certain situations as can
be seen from panels �b� and �c� of Fig. 4. Using the differ-
ence criterion x it is not clear whether the cluster should
close after the 6th or the 13th largest bil

2 �cf. also 4�a��. The
criterion based on the ratio y indicates the 13th largest value
correctly. However, an even larger ratio appears between the
two smallest bil

2, again leading to an ambiguity. Effects of
these kind become even more pronounced as the noise con-
tamination of the matrix elements Cij increases, a situation
that has to be taken into consideration in real world applica-
tions.

However, the product x ·y of both measures develops a
pronounced and unique peak at the correct position; see Fig.
4�d�. Consequently it allows us to deduce a robust threshold
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FIG. 3. Dependence of the four largest eigenvalues �k �light
gray� and CPC �k �dark gray� on the relative inter-cluster relation.
Nens=100 independent realizations of the same block-matrix model
as in Fig. 1 with K=3 clusters were sampled using K�=4. Dotted
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Appendix.
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which is defined in a self-contained manner and can there-
fore be used for automated attribution of channels to clusters.
In rare cases this recipe assigns a channel “i” to several
clusters “l.” To establish uniqueness in such situations the
cluster with the largest bil

2 is selected.

IV. ESTIMATES FOR THE INTERRELATION STRENGTH

A. Intra-cluster relation

Under the assumption that the studied interrelation matrix
C has a clear cluster structure in the sense that intra-cluster
relations are stronger than inter-cluster relations and noise
contamination is weak, the situation can be modeled by
block matrices. In the Appendix such a simplified model
with constant intra- and inter-block elements is treated in
perturbation theory. In cases where the studied matrix C can
indeed be approximated by a block matrix these results can

be used to estimate the intra-cluster and inter-cluster rela-
tions.

The most direct estimate for the intra-cluster relations can
be deduced from the average absolute off-diagonal matrix
element ��Cik	jk

� � inside the block Ckk. Here the indices ik

and jk are restricted to the channels that �according to the
used algorithm� actually contribute to cluster “k.” Exploiting
the observation �k��k

�0� shown in Fig. 3 and Eq. �A1� the
total intra-cluster relation Ck in cluster “k” can in addition be
estimated from the CPC via

Ck �
�k − 1

mk − 1
. �9�

In order to check the reliability of both estimates we again
employed a variant of the three-cluster block-model of the
type �4� with a finite width �c=�d=�=0.1 of the distribution
of the matrix elements. In Fig. 5 we show an example with
M =32 channels and cluster sizes m1=8, m2=11, m3=5 and
average intra-cluster relation c1

�0�=0.7, c2
�0�=0.4, and c3

�0�

=0.8. All inter-cluster relations were set to the same average
value d12

�0�=−d13
�0�=−d23

�0�=d�0� that was restricted to the range

0�d�0��min ck
�0�=c2

�0� in order to assure a clearly defined
cluster structure. Nens=100 independent realizations of the
matrix were sampled and K�=3 was kept fixed.

Within the given statistics both estimates agree with the
values ck

�0�. It is remarkable that for not too large d�0� /c2
�0�

�0.6 the errors of the estimate �9� are considerably smaller
than those of ��Cik	jk

� � which are of the order of �c. This can
be understood by calling the fact that the CPC depend on the
largest eigenvalues and eigenvectors only. For moderate
inter-cluster relations the latter are known to be less contami-
nated by purely random interrelations than the elements of
the matrix C; see e.g. �11� for the example of the correlation
matrix. It remains to make a remark on the origin of the
mavericks in �d� and �f�. For increasing inter-cluster relations
the errors of the estimate for the CPC grows as can be seen
from Fig. 3. Therefore it may happen occasionally that the
algorithm interchanges the cluster-labels “2” and “3.” Indeed
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FIG. 4. Different candidates of measures that are suitable for
automatic attribution of channels to clusters. �a� Squared compo-
nents biM

2 of Fig. 2 put into increasing order. �b� Difference x be-
tween adjacent values. �c� Ratio y between adjacent values. �d�
Product x ·y of difference and ratio between adjacent values. Note
the logarithmic scale in �b� and �c�.
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FIG. 5. Comparison of different estimates for the intra-cluster relations of the three clusters of a model system �see text�. Shown is a band
of two standard deviations width around the average over Nens=100 independent realizations. Top: Ck of Eq. �9�; bottom: average absolute
matrix element ��Cik	jk

� � between the clustered channels.
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the switching of the average matrix elements ��Cik	jk
� � takes

place between the values 0.4 and 0.8.

B. Inter-cluster relation

Under the condition that the CPC are nondegenerate and
the inter-cluster relations moderate their strength can be es-
timated from the overlap of the eigenvectors and the CPV. To
this end we remind the observation �k��k

�0� of Fig. 3 and
use Eq. �A4� as well as vk

�0�=wk to obtain the estimate

Dkl � �wl�vk�
�k − �l

�mkml

for k � l �10�

for the interrelation between clusters “k” and “l.” Again we
used the three-cluster block-model introduced above to ex-
plore the reliability of this estimate. Now clusters of size
m1=7, m2=5, and m3=3 are formed within a total of M
=20 channels. The parameters are set to the following val-
ues: ck

�0�=c�0�=0.8, d12
�0�=0.6d�0�, d13

�0�=−0.8d�0�, d23
�0�=−d�0�,

and d�0� is varied in the range �0,c�0��. The width of the
distribution of the matrix elements is again �c=�d=�=0.1.

In Figs. 6�a� and 6�b� the results are shown for Nens
=100 independent realizations of the matrix C and K�=3.
For relative inter-cluster relations d�0� /c�0��0.7 the average
of the inter-cluster matrix elements �Cikjl

� reproduces dkl
�0�

very well, though with large error bars of size �d. Beyond
this value the clusters can no longer be distinguished by the
algorithm. As compared to the average matrix element the
estimate Dkl of Eq. �10� supplies a much better approxima-
tion to dkl

�0� for small d�0� /c�0��0.3. However, for larger
d�0� /c�0� the absolute value of �dkl

�0�� is systematically under-
estimated.

For K�=2, a case that, e.g., appears frequently in applica-
tions to electroencephalograms, the absolute value of the
inter-cluster relation d12 can in addition be estimated from
the eigenvalue and the CPC alone via Eq. �A5�:

�D12� � ����M − �M���M − �M−1�
m1m2

����M−1 − �M−1���M − �M−1�
m1m2

. �11�

The sign of the interrelation is not accessible. To compare the
quality of this estimate to the earlier one we employed a
two-cluster block-model of type �4� with M =32 channels.
Here we show the case where the cluster parameters are cho-
sen as m1=13, m2=9, ck

�0�=c�0�=0.8, and �c=�d=�=0.1.
Figure 6�c� shows that for Nens=100 repetitions the result of
Eq. �11� has very small error bars and delivers reliable esti-
mates up to larger values d�0� /c�0� than �10�. Unfortunately,
for K��2 a similar estimate based on the CPC alone is no
longer possible: The arising system of K� linear equations for
K��K�−1� /2 coupling parameters dkl

2 is underdetermined �for
K�=3 the resulting matrix is singular�.

Reminding �vk
�0� ��vk

�2����wk �vk�−1 also formula �A8�
can be used to determine the absolute value of d12 uniquely if
K�=2:

�D12� � ��2�1 − ��wM�vM���
��M − �M−1�2

m1m2

��2�1 − ��wM−1�vM−1���
��M − �M−1�2

m1m2
. �12�

For larger K� the dkl
2 also remain underdetermined here. We

have investigated the utility of this formula and found that it
leads to estimates very similar to those of Eq. �10�. Compar-
ing Eq. �A4� with Eq. �A8� in the special case K�=2 we find
��vM

�0� ��vM−1
�1� ��2=−2�vM

�0� ��vM
�2�� and a similar relation for

vM−1
�0� . This close relation explains why the estimates �10� and

�12� lead to very similar results.
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FIG. 6. �a� and �b� Comparison of the estimates Dkl of Eq. �10� �dark gray� and �Cikjl
� �light gray� for the inter-cluster relations between

the three clusters of the model �see text�. As fully drawn lines also the center of the distribution of the matrix elements dkl
�0� is shown. The

figure for D23 �not shown� looks qualitatively like the one for D13. �c� Comparison of the estimates for the inter-cluster relations of a
two-cluster system. The estimates given by Dkl of Eq. �10� and the average inter-cluster matrix element are again shown as dark and light
gray bands, respectively. In contrast the estimate �11� is shown with its error bars.
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V. STATISTICAL EVALUATION OF THE PERFORMANCE
FOR CORRELATION CLUSTERS

The simple block model �4� exploited up to now can be
used as an idealization of interrelation matrices C that are
constructed from any measure that satisfies the conditions �1�
to �3�. As the CPV algorithm itself is independent of the
details of the underlying interrelation measure we specify to
one of the simplest and computationally easiest ones. In or-
der to evaluate the applicability of the CPV algorithm for the
analysis of mutual relations of time series we use the linear
equal-time cross-correlation matrix �17,18� from now on:

C =
1

T
X̃X̃t. �13�

Here the M �T data matrix X̃it= X̃i�t� contains the M signal
channels measured on T time steps after normalization to
zero mean and unit variance as defined over T data points:

X̃i�t� =
Xi�t� − �Xi�

�i
. �14�

A. Time series based test framework
for cluster detection algorithms

In order to be able to properly evaluate and compare the
performance of the CPV algorithm for detection of clusters
in multivariate time series we set up a time series based test
framework. Note that a more direct sampling of C-matrices
as done up to now bears the danger of producing “unphysi-
cal” matrices. For instance the unit matrix in M dimensions
�corresponding to completely uncorrelated channels� is con-
tained in the model �4� but no set of corresponding time
series can be found for any finite T. More severely, the posi-
tive definiteness of the correlation matrix �13� can easily be
violated by sampling C-matrices instead of time series.

For such reasons we prefer to use an ensemble of size Nens
of multivariate noise time series. The degree of correlations
between subgroups of the M time series of length T is con-
trolled via common noise components of adjustable ampli-
tude; cf. the model of �39�. To model a system that contains
K clusters the following prescription is used �16�:

Xit = �1 − 	
k

�ik − 	
�kk��

�i�kk����it + 	
k

�ik�kt

+ 	
�kk��

�i�kk����kk��t. �15�

The strength of the “intra-cluster correlations” is controlled
via the parameters �ik which have a nonzero value only if
channel “i” belongs to cluster “k.” Similarly the parameters
�i�kk�� control the strength of the “inter-cluster correlations”
and are finite only if channel “i” belongs to one of the clus-
ters k or k��k. Finally, �it, �kt, and ��kk��t denote the indi-
vidual and common noise components that are drawn inde-
pendently from a Gaussian distribution with zero mean and
unit variance on every time step. In order to have a well
defined cluster structure in the sense that intra-cluster corre-

lations must be stronger than inter-cluster correlations the
conditions �i�kk���max��ik ,�ik�� must be satisfied. More-
over, in order to be able to switch between completely cor-
related and completely uncorrelated channels the value of the
bracket in Eq. �15� must fall inside the interval �0,1� for all
channels “i.”

Using Eq. �15� and the fact that �it, �kt, and ��kk��t are
mutually uncorrelated the average covariance of time series
Xit and Xjt can easily be derived as

�XitXjt� = �ij�1 − 	
k

�ik − 	
�kk��

�i�kk���2
+ 	

k

�ik� jk

+ 	
�kk��

�i�kk��� j�kk��. �16�

From this the average elements of the C-matrix can be cal-
culated via Cij = �XitXjt� /��Xit

2��Xjt
2 �.

For a general situation of K clusters the attribution errors
may be sorted into the following four categories: �Ik� chan-
nels that contribute to a given cluster “k” are not detected �K
subcategories�, �IIkk�� channels that belong to cluster “k” are
attributed to cluster “k��k” �K�K−1� subcategories�, �IIIk�
uncorrelated channels are attributed to the cluster “k” �K sub-
categories�, and �IV� false clusters �“pseudoclusters” �14��
are found within the uncorrelated channels. The attribution
errors of either category can be measured by the average
ratio of misattributions over the Nens realizations of Eq. �15�
with the same parameters.

B. Evaluation

For a systematic evaluation of the different categories of
attribution errors we concentrate on the generic problem of
distinction of K=2 clusters with finite inter-cluster correla-
tions. The case K�2 has also been studied, however, the
huge parameter space makes a comprehensive but lean pre-
sentation of the results impossible. An example of the per-
formance of the algorithm for K=4 is given in �16� where
also comparison with PI and the standard k-means algorithm
�1,2� is made. To this end the average of the attribution errors
of categories I to IV is shown there, rather than a separate
discussion of the categories.

In Fig. 7 we show the attribution errors for Nens=100
independent realizations of Eq. �15� for a two-cluster situa-
tion with T=1024, M =20, m1=10, m2=5, and �1=�2=�.
With the exception of �f� �where K�=3 is kept fixed� the
value of K� is defined automatically by the number of eigen-
values that become larger than the upper boundary �+ of the
eigenvalue density of the Wishart ensemble; cf. Sec. III C. It
has been tested before that for only randomly correlated time
series all eigenvalues �l nicely fall into the interval ��− ,�+�.

Comparison of Figs. 7�a� and 7�b� reveals a small asym-
metry of the channels that are not correctly attributed to the
clusters “1” and “2.” Due to the different cluster size m1
=2m2 the region where errors are committed is slightly larger
for the smaller cluster. In general errors of category I are
committed if the total correlation is too small �i.e., � ,��1�.
In this situation the cluster structure is simply not pro-
nounced enough to be detected by the CPV algorithm. In
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�16� it is shown that other algorithms have similar perfor-
mance difficulties in this region. Figure 7�c� shows the errors
stemming from channels that belong to cluster “1” but are
erroneously attributed to cluster “2.” Examination of the
structure of the corresponding CPV w20 and w19 reveals that
in these cases the algorithm is unable to distinguish between
the two clusters and finds a common one. As expected this
kind of problems occurs for relatively small intra-cluster
couplings and inter-cluster couplings of comparable ampli-
tude. Note that the CPV algorithm does not encounter prob-
lems, when dealing with strong inter-cluster correlations in
general. Figure 7�d� shows that in the same region occasion-
ally unclustered channels are erroneously attributed to cluster
“1.” The errors of categories II21 and III2 are not shown in
the figure as they are almost identical to those of II12 and
III1. Finally, Figs. 7�e� and 7�f� show to what extent
“pseudoclusters” are found by the CPV algorithm. If K� is
defined automatically by the number of eigenvalues �k��+

�e� errors of category IV are committed in the same region as
those of II and III. However, a huge amount of “pseudoclus-
ters” are found within the unclustered channels if K�=3 is
kept fixed. Comparison with Fig. 1�b� shows that this short-
coming is not caused by a failure of the maximization of the
function �6�. The structure of the corresponding low lying
CPV is very similar to the eigenvectors. Rather, what causes
“pseudoclusters” is the fact that the automatic attribution al-
gorithm is forced to attribute channels to a cluster “3” that
simply does not exist.

C. Problems of the CPV algorithm

Despite the overall satisfactory performance of the algo-
rithm we focus on the problematic situations in the following
in order to investigate in more detail under which conditions
the algorithm tends to fail. In Fig. 8 we show the dependence
of the attribution errors on the two cluster sizes m1 and m2
for Nens=100 independent realizations of Eq. �15�. The pa-
rameters were set to T=1024, M =20, �1=�2=0.15, and �
=0.14. As the inter-cluster correlations are almost as strong
as the �weak� intra-cluster correlations these parameters are
very unfavorable for any cluster detection algorithm; cf. Fig.
7�c� for the CPV. Again K� is defined automatically via �k
��+. Attribution errors of category I1 are mainly committed
for small cluster sizes m1 and m2. In contrast for ���
�0.15 error category II12 becomes worst for m1+m2�M.
Under these unfavorable conditions the algorithm again fails
to separate the clusters. Compared to categories I1 and II12
again III1 and IV turn out of minor importance. We have
checked that these kinds of attribution errors in addition di-
minish rapidly as the shaded areas of Figs. 7�d� and 7�e� are
left. Therefore, we concentrate on categories I1 and II12 in
the following.

In Fig. 9 the attribution errors of category I1 �channels
that belong to cluster “1” are not found� and II12 �channels
that belong to cluster “1” are erroneously attributed to cluster
“2”� are shown for M =20, T=1024, Nens=100 and �1=�2
=0.3, �=0.2. Under these more favorable conditions attribu-
tion errors of categories I1 and II12 are committed only if
one of the two clusters is small 1	m1 ,m2�3. Errors of type
III and IV are no longer committed at all and therefore not
shown.
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FIG. 7. Statistical evaluation of the categories I to IV of the
attribution errors for a two-cluster situation with equal intra-cluster
correlations �1=�2=� and inter-cluster correlation �. The triangle
of the allowed region of the parameters � and � is visible in �f�.
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FIG. 8. Statistical evaluation of the categories I to IV of the
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To investigate the behavior of the error category II if one
of the clusters is very small, we finally show the result of
Nens=100 realizations with M =40, �1=�2=�, and T=1024 in
Fig. 10. If one of the clusters is large �m2=17� the small one
�m1=2� cannot be distinguished and the corresponding chan-
nels are erroneously attributed to the larger one if ���; see
�a� and �b�. Misattributions in the opposite direction are ex-
tremely rare. When the smaller cluster grows, e.g., m1=5,
misattributions are committed in both directions but occur in
the region ����0.2 only.

VI. APPLICATION TO TIME-DEPENDENT MODEL DATA

The examples shown in Sec. V consist of averages over
an ensemble of size Nens that has been produced under sta-
tionary conditions. Such a situation cannot always be real-

ized in real world applications where time series are often
intrinsically nonstationary. For instance in �14,16� first appli-
cations of cluster detection algorithms to electroencephalo-
graphic recordings containing epileptic seizures are made. If
cluster detection algorithms are to be applied to such data
using a running analysis window of length T reliable results
must be delivered on every time step. We show in the fol-
lowing by studying nonstationary model time series that the
CPV algorithm is capable of dealing with these conditions,
too.

For test purposes we used M =20 time series produced
from the model �15� with time dependent cluster structure. A
time unit was arbitrarily set to 256 data points and time
series of 35 units length were sampled with changing cluster
structure. The parameters were chosen such that the advan-
tage of the CPV algorithm over the competing methods of PI
�13,14� and the components of large eigenvectors alone
�10,11� becomes most pronounced; cf. �16�. In the first and
last five time units no correlation clusters are present in the
test system: �k=�kk�=0 for k ,k�=A ,B ,C. In the segment t
=10–15 two clusters are formed by the channels 12–17 and
18–20. The amplitudes of the intra- and inter-cluster corre-
lations �k and �kk� are given in Table II and Table III, respec-
tively. Later on in t=20–25 the cluster “C” has been re-
placed by cluster “A” which is formed by the channels 8–11
and the intra-cluster correlations of cluster “B” have in-
creased slightly. In the remaining segments all parameters �k
and �kk� of Eq. �15� are shifted linearly between the values of
the adjacent segments.

Figure 11 shows the cluster structure revealed by the CPV
algorithm for different window lengths T. The number K� is
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FIG. 9. Statistical evaluation of the categories I1 and II1 of the
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correlations �1=�2=0.3 and inter-cluster correlation �=0.2 as a
function of the cluster sizes. Shown are average attribution errors.
Note that the apparent asymmetry in �a� disappears if the error bars
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FIG. 10. Statistical evaluation of the category II of the attribu-
tion errors for a two-cluster situation with equal intra-cluster corre-
lations �1=�2=� and one small cluster. Top: m1=2, m2=17; bot-
tom: m1=5, m2=17.

TABLE II. Time dependence of the intra-cluster couplings of
the test model.

Segment
A

Channels 8–11
B

Channels 12–17
C

Channels 18–20

0� t	5 �A=0 �B=0 �C=0

5� t	10 �A=0 linear linear

10� t	15 �A=0 �B=0.3 �C=0.15

15� t	20 linear linear linear

20� t	25 �A=0.4 �B=0.4 �C=0

25� t	30 linear linear �C=0

30� t�35 �A=0 �B=0 �C=0

TABLE III. Time dependence of the inter-cluster couplings of
the test model.

Segment A–B A–C B–C

0� t	5 �AB=0 �AC=0 �BC=0

5� t	10 linear linear linear

10� t	15 �AB=0.1 �AC=0.1 �BC=0.25

15� t	20 linear linear linear

20� t	25 �AB=0.38 �AC=0.15 �BC=0.15

25� t	30 linear linear linear

30� t�35 �AB=0 �AC=0 �BC=0
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defined dynamically as explained in Sec. III C: 0� t�5 is
chosen as a reference interval for which the upper boundary
of the 90% significance interval of the eigenvalues �l is cal-
culated. Channels that contribute to different clusters are
marked by different colors �gray values�. In principle the
involvement of a channel in a cluster as given by bik

2 could be
coded by the color depth. For better graphical clarity here a
channel was given full color whenever bik

2 �1 /M =0.05 and
left white otherwise. The attribution errors committed by the
CPV algorithm decrease with increasing window length T. In
t=10–15 the inter-cluster correlations �BC are too strong and
the intra-cluster correlations �B and �C too weak for the two
clusters to be disentangled for T=64. In addition not all
channels of cluster “B” are found. In the situation given in
t=20–25 this is already possible for T=64. Increasing T the
dynamically changing cluster structure is revealed perfectly
well by the CPV algorithm. Of course this has to be bought
with a loss of time resolution.

In Fig. 12 we display the time resolved performance of
three alternative approaches, cf. �16�, for the same situation
as in Fig. 11�c�. The dynamical definition of K� makes it
possible to compare all algorithms on the same footing. First,
the method for automated attribution of channels to clusters
is used on the basis of the largest EV instead of the CPV.
This can be seen as an unsupervised version of the approach
used in �10,11�. Second, we compare to the PI algorithm
�including the trimming procedure of �13,14� but without the
additional concept of bit strings that was introduced in �14�
to filter out the most frequent cluster patterns�. Third, we use
the standard k-means algorithm for hard partitional clustering
of data �1,2� with equal-time cross-correlation as proximity
measure. As this algorithm is known to depend on the initial
choice of the cluster centroids we checked the performance
of the three possibilities beforehand: �i� Heuristic linear com-
bination of K� disjoint groups of time series “i” on the basis

of large C-matrix elements, �ii� use of K� randomly chosen
time series, and �iii� use of K� randomly sampled time series.
We used the best performing heuristic initial centroids �i� in
our comparison. While for EV and PI the strength of the
involvement of a channel “i” in a cluster “k” is estimated
from the eigenvector components aik

2 in the case of the
k-means algorithm we use the absolute value of the cross-
correlation of the channels with the cluster centroids for the
same purpose. Again only channels with involvement
�1 /M =0.05 are shown.

In the segment t=10–15 a separation of the clusters is
still unstable using the largest EV alone �Fig. 12�a��. Here
mainly attribution errors of category II are committed. For
the same situation the PI are unable to distinguish the two
clusters even in the segment t=20–25 �Fig. 12�b��. From
Fig. 12�c� it becomes clear that in the segment t=10–15 our
implementation of the k-means algorithm does not perform
convincingly either. Channel “14” of cluster “B” is con-
stantly mixed into cluster “C” �error cat. II�. We have
checked that the deficiencies of the alternative algorithms
cannot be cured by further increasing T.

In Fig. 12 strong inter-cluster couplings were chosen in
order to put emphasis on performance differences between
the CPV on the one hand and EV and PI on the other. Now
we investigate the dynamical reliability of our estimates for
the intra- and inter-cluster correlations. In order to be able to
exploit second order perturbation theory the ratio of the av-
erage inter- and intra-cluster matrix elements d�0� /c�0� must
be confined to small values �d�0� /c�0� � �0.25; cf. Fig. 6.
Therefore the values of the intra-cluster couplings of Table II
were reduced by a factor 0.8 and the inter-cluster couplings
of Table III by a factor 0.4. In Fig. 13 the temporal evolution
of the estimates �9� and �11� �black symbols� is shown for the
strongest two clusters in comparison to the average of the
involved C-matrix elements �gray symbols with error bars�
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FIG. 11. �Color online� Cluster
structure of the same model sys-
tem analyzed with the CPV algo-
rithm and three different window
lengths T. The bar below the
specification of the window length
T shows which part of the time
series is used at a time. All chan-
nels marked by the same color
�gray value� belong to the same
cluster �w20: dark gray; w19: gray;
w18: light gray�.
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and as estimated directly from the coupling strengths via Eq.
�16� �fully drawn lines�. If the inter-cluster coupling is not
too weak the estimates Ck �where k=A ,B� of Eq. �9� are
compatible with ��Cikjk

� � and close to the value c�0�calculated
directly from Eq. �16�. From �c� it becomes obvious that the
estimate �11� for the inter-cluster correlations is closer to d�0�

than �Cikjl
�. Indeed the ratio d�0� /c�0��0.2 is in the region

where second order perturbation theory should give good
estimates for the inter-cluster correlations. Situations with

larger d�0� /c�0� were also explored. There the obtained result
Dkl	Dkl� 	d�0� is consistent with the findings of Fig. 6�c�.

VII. SUMMARY AND DISCUSSION

In the present paper the features of a recent cluster detec-
tion algorithm based on cluster participation vectors �CPV�
�16� have been explored. The algorithm can be used for any
bivariate interrelation measure Cij between two channels “i”
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FIG. 12. �Color online� Cluster
structure of the same model sys-
tem as in Fig. 11�c� analyzed with
three alternative algorithms and
T=512. All channels marked by
the same color �gray value� be-
long to the same cluster �w20: dark
gray; w19: gray; w18: light gray�.
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FIG. 13. �a� and �b� Estimates
Ck �black symbols� and ��Cikjk

� �
�gray symbols with error bars� for
the intra-cluster correlations. �c�
Estimates Dkl �black symbols� and
�Cikjl

� �gray symbols with error
bars� for the inter-cluster correla-
tions. For comparison in all panels
also the time evolution of the av-
erage C-matrix elements c�0� and
d�0� as calculated from the cou-
pling strengths via Eq. �16� is
shown as fully drawn lines.
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and “j” of a multivariate time series that satisfies the condi-
tions �1�–�3�. Details of the algorithm, which is particularly
not restricted to the use of the linear equal-time cross-
correlation coefficients, have been discussed in the present
paper in more elaborate fashion than possible in �16�.

It was shown that different to the squared coefficients aik
2

of the largest eigenvectors of the interrelation matrix C, the
components bik

2 of the CPV give information about the rela-
tive involvement of channel “i” in cluster “k” even in the
presence of relatively strong inter-cluster relations.

The introduction of cluster participation coefficients
�CPC� and the use of second order perturbation theory allows
for the estimates �9�, �10�, and �11� of the intra- and inter-
cluster relations. By sampling interrelation matrices the reli-
ability of these estimates was explored systematically, find-
ing that they outperform simple averages over the bivariate
interrelations Cij of the involved channels. The uncertainties
of Eqs. �9�, �10�, and �11� are significantly smaller due the
fact that they depend on large eigenvalues and the corre-
sponding eigenvectors only, which are known to be less in-
fluenced by random correlations and noise.

After these basic studies we have specified to the special
case of positive definite equal-time cross-correlation matrices
and explored four different categories of attribution errors
systematically on the basis of model time series with known
cluster structure. In large areas of the parameter space the
CPV algorithm reliably separates clusters—even in the pres-
ence of considerable inter-cluster correlations where many
competing methods fail; cf. �16�. However, it gets confused
for small total correlation. This is almost natural; if the clus-
ter structure is too weak the involved channels cannot be
detected reliably by any algorithm. For the CPV algorithm
this is especially true if at least one of the clusters is small. In
such situations the small cluster can only hardly be separated
from the larger one.

Using model data with time-dependent cluster structure
we found that the CPV algorithm outperforms competing
approaches while still delivering reliable estimates for intra-
and inter-cluster relations if only their ratio is small enough
to allow for second order perturbation theory. In �16� first
application of the CPV algorithm to EEG recordings contain-
ing primary generalized epileptic seizures of absence type
has been presented. More work in this direction is in
progress and will be published elsewhere.
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Appendix: A simplified model for the K-cluster situation

In this appendix we give some analytical results for the
block model �4� for a K-cluster situation. For vanishing inter-

cluster dependencies dkl=0 every block Ckk produces one
large eigenvalue

�k↑
�0� = 1 + �mk − 1�ck �A1�

and mk−1 degenerate small ones

�k↓
�0� = 1 − ck. �A2�

In the mk-dimensional subspaces of the blocks Ckk the eigen-
vectors corresponding to the eigenvalue �A1� are completely
symmetric: vk↑

�0�=1 /�mk�1, . . . ,1�t. Any linear combination of
the antisymmetric vectors vk↓

�0�=1 /�2�1,0 , . . . ,−1 ,0 , . . . �t of
these subspaces with only two nonzero entries with opposite
sign is an eigenvector corresponding to the degenerate eigen-
values �A2�. All eigenvalues that do not correspond to one of
the blocks Ckk are equal to 1 with canonical basis vectors as
eigenvectors. These eigenvalues are often called “bulk” ei-
genvalues.

For finite but small matrix elements dkl the mixing of this
clear situation can be assessed by perturbation theory as
known from quantum mechanics. We restrict our discussion
to the K largest eigenvalues �A1� and the corresponding
eigenvectors in the sequel: k , l=1, . . . ,K. The first order cor-
rection of the eigenvalues �A1� vanishes. Using the abbrevia-
tion ��kl

�0�=�M+1−k
�0� −�M+1−l

�0� the lowest correction of the K
largest orthonormal eigenvectors reads

�vM+1−k
�1� = 	

l�k

�mkmldkl

��kl
�0� vM+1−l

�0� . �A3�

Note that because of �vk↑
�0� �dkl �vl↓

�0��=0 the antisymmetric
eigenvectors of small eigenvalues �A2� do not contribute.
The overlap with the unperturbed eigenvectors becomes for
l�k

�vM+1−l
�0� ��vM+1−k

�1� � =
�mkmldkl

��kl
�0� �A4�

and �vM+1−k
�0� ��vM+1−k

�1� �=0.
The leading correction to the large eigenvalues �A1� is

given by second order perturbation theory:

��M+1−k
�2� = 	

l�k

mkmldkl
2

��kl
�0� . �A5�

Similarly, the correction to the large eigenvectors in second
order perturbation theory gives the leading order contribution
to the overlap with its own unperturbed eigenvectors:

�vM+1−k
�2� = 	

l�k
	
n�k

mk
�mlmndkldkn

��kl
�0���kn

�0� vM+1−l
�0�

−
1

2	
l�k

mkmldkl
2

���kl
�0��2vM+1−k

�0� . �A6�
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The first term contributes for l�k

�vM+1−l
�0� ��vM+1−k

�2� � = 	
n�k

mk
�mlmndkldkn

��kl
�0���kn

�0� , �A7�

whereas the last term contributes to the overlap for k= l:

�vM+1−k
�0� ��vM+1−k

�2� � = −
1

2	
l�k

mkmldkl
2

���kl
�0��2 . �A8�

Higher order perturbation theory does not lead to formulas
that can be used for estimation of the inter-cluster relations.
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